Treatment of Raw Domestic Waste Using Plant-Based Adsorbents

Zindagi Malhotra Innosphere Conference, October 5th 2024

Outline

- 01Introduction06Discussions
- **02** Literature Review **07** Challenges and Limitations
- 03Materials08Conclusion
- 04 Methodology 09 References
- 05 Results 10 Acknowledgements

Introduction

Problem Statement

- 380 billion cubic metres of domestic wastewater is produced annually
- Only 56% is treated properly
- Untreated wastewater affects public health, water bodies, soil quality, etc.

Objective

- To use plant-based, natural adsorbents for domestic wastewater treatment
- More environmentally friendly, easily accessible to the community

Why It Matters

- Eco-friendly wastewater management \rightarrow reduce reliance on chemical treatment systems
- Untreated wastewater contaminates water bodies
- Cost effective

Literature Review

Current Conventional Methods of Wastewater Treatment

- WWTPs
 - Capital intensive
 - Biological treatment & chemical coagulation
- Decentralised treatment systems
 - Smaller scale
 - Utilise constructed wetlands

Limitations of Conventional Methods of Wastewater Treatment

- High costs and maintenance fees
- Require large areas of land, unfeasible in urban areas

Materials

Plant based adsorbents: Spent tea, charcoal, sawdust

- High surface area and porosity
- Functional groups (-OH and-COOH) enhance ability to absorb
- Can act as cation exchangers
- Non-toxic & biodegradable

Typical pollutants of raw domestic wastewater

- BOD and COD \rightarrow organic pollutants and matter
- Nutrients from food waste, cleaning products, etc.
- Bacteria, viruses, parasites
- FOG

Methods

Experimental Setup

- Modified plastic bottle
- Layers of adsorbent materials added
- Wastewater poured through and filtered into beaker

Analytical Technique

- The following water parameters were tested before and after treatment using JalTARA Water testing kit:
 - Physical: pH, Turbidity and Hardness
 - Chemical: Chloride, Fluoride, Iron, Nitrate

Results

							Treated
							Wastewater
				Treated	Treated	Treated	Sample using
			Raw	Wastewater	Wastewater	Wastewater	Spent Tea +
			Wastewater	Sample using	Sample using	Sample using	Sawdust +
Sr. No.	Parameter	Drinking water	Sample	Spent Tea	Sawdust	Charcoal	Charcoal
1	pН	6.5-8.4	9.5	5.5	7	7.5	7.2
	Turbidity						
2	(NTU)	5-10	145	50	22	8	19
3	Fluoride (mg/L)	1-1.5	3	0.7	0.8	1.2	1.8
4	Nitrate (mg/L)	45	90	30	55	40	35
5	Iron (mg/L)	0.3-1.0	2.6	2	1.5	0.25	0.7
	Hardness						
6	(mg/L)	300-600	800	690	450	580	500
	Chloride						
7	(mg/L)	250-1000	1200	1250	230.425	709	650

Discussion

Analysis

- Charcoal most efficiently removed turbidity (145 \rightarrow 8 NTU), likely due to its porous structure which is excellent at trapping particulate matter
- Spent tea reduced pH and fluoride significantly, due to its acidic nature
- Sawdust reduced hardness, effective in adsorbing calcium and magnesium ions
- The combination of adsorbents was not always as successful as the individuals, possibly due to competition between adsorbents for active sites

Sustainability benefits

- Plant based adsorbents are eco-friendly in nature
- Renewable
- Biodegradable: ensuring minimal negative impact after use

Challenges and Limitations

Challenges

- Availability of these materials could fluctuate seasonally or be difficult to acquire in bulk
- Existing facilities may not be equipped to handle these adsorbents
- Initial startup costs and transportation costs could be high

Limitations

- Focused on three adsorbents only
- Minimal trials

Improvements

- Assessing a wide range of adsorbent materials
- Conducting long-term, more thorough experiments
- Cost-benefit analysis to truly understand viability

Conclusion

Summary

- Plant based adsorbents are effective in treating domestic wastewater
- Quantitatively, charcoal as an adsorbent was the most effective overall

Future Steps

- Large-scale testing in a lab
- Exploring different combinations of adsorbents
- Expanding scope for different industries
- More in depth research

References

- 1. Metcalf, L., & Eddy, H. P. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill Education.
- Abou-Elela, S. I., Ibrahim, H. S., Abou-Taleb, E. M., & El-Hawarry, S. E. (2017). Combined treatment of domestic wastewater using sequencing batch reactor and constructed wetland system. Journal of Water Process Engineering, 15, 41-47.
- Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2013). Wastewater engineering: Treatment and reuse (4th ed.). McGraw-Hill.
- 4. Wang, Y., Li, F., & Li, Z. (2019). Adsorption of heavy metals from domestic wastewater by modified biochar. Water Science and Technology, 80(12), 2339-2348.

Acknowledgements

Dr. Rohan Louis D'Souza

Athena Education

