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Introduction

• Increasing its efficiency in converting solar irradiance 
to usable electricity is critical.

As Solar Energy becomes 
an increasingly crucial 

source of renewable 
energy, increasing 

economy of solar panels is 
an engineering challenge.

• The semiconductors used in solar panels are 
sensitive to high temperature

• Their efficiency reduces by 0.5% for every degree 
Celsius rise above the optimum temperature of 25 
degrees Celsius 

Overheating is one of the 
key factors that affect 

efficiency of a solar panel



Wider Implications of Reduced Efficiency

INEQUITABLE ACCESS TO ENERGY, 
ESPECIALLY CLEAN ENERGY, ESPECIALLY 

FOR DEVELOPING AND UNDER- 
DEVELOPED COUNTRIES.

INCREASED OPERATING COST 
OF DEVICES THAT USE SOLAR 

PANELS.

WITH WATER AS A WIDELY 
USED COOLANT, ALTERNATE 

COOLANTS NEED TO BE 
EXPLORED, GIVEN CRISIS OF 

FRESH WATER.



The research, by elaborating the impact of various 
coolants with unique specific heat capacity on the 
efficiency of solar panels, aims to throw light on the 
relation, if any, between specific heat capacity and solar 
panel efficiency. 
It explores the possibility of using alternative coolants in 
ameliorating the adverse effect of overheating of the solar 
panels. 



Secondary Research: Science of Solar Panels & Role of Coolants



1. An expression for the rate of SRH 
recombination including the expression for 
intrinsic carrier concentration

2. An expression for the relationship 
between the size of the band gap and 
temperature.

3. An expression for the correlation between the 
Open Circuit Voltage (Voc) and intrinsic carrier 
concentration (Diebel).

4. The final expression for the maximum 
efficiency achieved by a solar panel.



Relationship between the 
efficiency of a solar panel and 
carrier lifetime. (Shukla et al.)

The k-space for an indirect band 
gap semiconductor. (University 
of Cambridge)

Defect Density Concentration v. 
Temperature (Landi et al.)



Hypothesis

Solutions with higher specific heat capacities are more effective as coolants, 
as they absorb more heat without seeing a large rise in their own temperatures 

Thus, coolants with higher specific heat capacities are expected to be more 
effective in cooling down solar panels.

By reducing the surface temperature of solar panels, coolants should also 
bring about an improvement in the efficiency of solar panels.



Experiment: Change in efficiency of a solar panel when 
treated with the following liquid coolants with different 
specific heat capacity:

Coolant Used Specific Heat Capacity (kJ kg-1 K-1)

Cooking Oil (Solar Panel 5) 1.9

Ethylene Glycol (Solar Panel 1) 2.42 

Ethanol (Solar Panel 4) 2.46

Soapy Water (Solar Panel 3) 3.15

Distilled Water (Solar Panel 2) 4.18



Variables
• Independent Variable: Specific Heat Capacity of Coolant (2 kJ kg-1 K-1

 to 4.5 kJ kg-1 K-1) 

• Dependent Variable: Efficiency of solar panel (%)

• Control Variables

• Angle of the solar panel

• Time of the day when the data is collected

• Volume of coolants

• Material and surface area of solar panels

• Extraneous Variables: 

• Amount of dust collected on solar panels 

• Albedo of coolants

• Fluid viscosity



Methodology and Procedure
The coolant was made to flow on the top surface of the solar panel through holes in the bucket 

holding the coolant. Identical buckets were used with identical size and placement of holes. The 

coolant was collected back in a bucket placed below the panel. 

For each trial (total 5 trials), Solar Irradiance and Voltage was measured. Next each solar panel 

was treated with the fixed volume of one of the 4 coolants. The voltage after each treatment was 

calculated. 

Using specific formula, Change in Voltage, Power in, Power out and Change in Efficiency was 

calculated. 

The experiment was conducted during the months of May 2024 and June 2024 outside the 

laboratory of Cairo American College, Egypt. 

 



Coolant Initial 
Efficiency 
Trial 1 (%)
± 0.006

Final 
Efficiency 
Trial 1 (%)
± 0.006

Initial 
Efficiency 
Trial 2 (%)
± 0.006

Final 
Efficiency 
Trial 2 (%)
± 0.006

Initial 
Efficiency 
Trial 3 (%)
± 0.006

Final 
Efficiency 
Trial 3 (%)
± 0.006

Initial 
Efficienc
y Trial 4 
(%)
± 0.006

Final 
Efficiency 
Trial 4 (%)
± 0.006

Initial 
Efficiency 
Trial 5 (%)
± 0.008

Final 
Efficiency 
Trial 5 (%)
± 0.008

Ethylene 
Glycol 

6.80 7.57 6.53  7.57 6.45 7.52 5.85 6.87 8.42 9.70 

Distilled 
Water

7.03 8.08 6.68 8.17 6.60 7.93 6.01 7.06 8.42 9.70

Soapy 
Water 

7.16 8.10 6.94 8.02 6.86 7.84 5.96 7.20 8.66 10.06

Ethanol 6.81 8.05 6.68 7.81 6.34 7.58 5.90 6.82 8.58 9.86

Cooking 
Oil 

7.10 7.48 6.59 6.89 6.80 7.35 5.72 6.45 8.50 9.70

Results: Initial and Final Efficiency for each trial



Coolant ΔEfficiency 
Trial 1 (%)
± 0.01

ΔEfficiency 
Trial 2 (%)
± 0.01

ΔEfficiency 
Trial 3 (%)
± 0.01

ΔEfficiency 
Trial 4 (%)
± 0.01

ΔEfficiency Trial 5 
(%)
± 0.02

Average 
ΔEfficiency 
(%) 

Uncertainty in 
Average 
ΔEfficiency (%)

Ethylene 
Glycol 

0.77 1.04 1.07 1.02 1.28 1.0 ± 0.3

Distilled 
Water 

1.05 1.49 1.33 1.36 1.28 1.3 ± 0.2

Soapy 
Water 

0.94 1.08 0.98 1.24 1.40 1.1 ± 0.2

Ethanol 1.24 1.13 1.24 0.92 1.28 1.2 ± 0.2

Cooking 
Oil 

0.38 0.30 0.55 0.73 1.20 0.6 ± 0.5

Results: Change in Efficiency for each trial



Coolant Average Change in 
Surface Temperature 

(°C)
± 0.1

Ethylene Glycol 22.45

Distilled Water 25.53

Soapy Water 27.03

Ethanol 26.73

Cooking Oil 23.40

Average Change in Surface Temperature Brought About by Coolants

Maximum Slope: 0.3087 % kJ-1 kg K
Line of Best Fit Slope: 0.2175 % kJ-1 kg K
Minimum Slope: 0.003104 % kJ-1 kg K

Average Change in Efficiency VS. Specific Heat Capacities of Coolants Used



Conclusion
• The experiment shows that solar panels showed an increase in efficiency after treatment with a coolant. Further, it confirms the 

hypothesis that a coolant with a higher specific heat capacity is more effective in increasing the efficiency of the solar panel. 

• Ethanol stands as an outlier – despite a lower specific heat capacity than soapy water, it showed a higher change in efficiency of the 

solar panel, post treatment. This could be attributed to better thermal conductivity and low viscosity of ethanol as compared with 

soapy water where the presence of soap could have affected its evaporation and rate of cooling. 

• It is advisable to use coolants that produce minimal fluctuations in the output of solar panels so as to no have large impact on the 

longevity of the panel by enabling it to deliver optimum output consistently within the optimum temperature range.  All the coolants 

used in the experiment produced minimal fluctuation in the output of the solar panels, as illustrated by the relatively small size of the 

error bars. 

Image Source

https://ar.wikipedia.org/wiki/%D9%85%D9%84%D9%81:Ethanol-structure.svg


Questions?
Contact: kavinshrimali@gmail.com
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