# A STUDY OF THE SORPTION OF HEAVY METALS FROM AQUATIC SOLUTIONS BY SORBENTS BASED ON CELLULOSIC WASTE

Author: Aruzhan Izguttinova, 12th grade student of Nazarbayev Intellectual School of Chemistry and Biology. aruizguttinova@gmail.com

# OUTLINE

### Introduction

- Importance of zinc ion removal
- > The effects of zinc ion on human body

### **Research aim and objectives**

- Conduct literature review
- Prepare samples and analyze cellulose content
- > Perform sorption experiments with cellulose-containing sorbents

# Methodology

Literature review and experimental part

# **Results and Discussion**

Key findings and visual representation of findings
Conclusion

Summary and References

# **RESEARCH RELEVANCE**







- A plant producing up to 193,000 tons of zinc per year;
  - Over 75 years, the plant has produced **13,686,126** tons of zinc.



The total volume of drainage is 194,508.7 m<sup>3</sup>/year.
Volume of industrial wastewater is 190,611.0 m<sup>3</sup>/year.



**Relevance of the study:** Wastewater enters groundwaters, contaminating them. Ions of heavy metals present in wastewaters pose a threat to human health and environment. Addressing water pollution is essential for improving public health and environmental sustainability.

# THE EFFECT OF ZINC ON THE HUMAN BODY

# **Excess zinc can cause:**

- Nausea
- > Vomiting
- > Diarrhea
- Headaches
- Fatigue
- Reduced immunity
- Liver and kidney damage
- Impaired absorption of other trace elements, such as iron and copper.



**Research aim:** examine different chemical activation methods to optimize sorption conditions and establish optimal conditions for zinc ion removal . **Research objectives:** 

- 1) Conduct literature review and select research methods;
- 2) Data collection and preparation of samples for experiments;
- 3) Determine the cellulose content in samples;
- 4) Conducting experiments on the sorption of zinc ions from model solutions using cellulose-containing sorbents and determining optimal sorption conditions.

# SORBENTS FOR REMOVAL OF Zn<sup>2+</sup>

| Sorbents for zinc ion removal | Conditions                                                          | Authors                                                      |
|-------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| Activated carbon              | Mass of sorbent: varied from 5 g/L to 20 g/L, duration: 30 minutes. | (Mishra & Patel, 2009)                                       |
| Humic substances              | Mass of sorbent: 20 g/L, duration: 3 hours.                         | (Bogatryov, Dmitrieva,<br>Leontyeva, & Syundyukova,<br>2017) |
| Modified bentonite            | Mass of sorbent: 20 g/L, duration: 3 hours.                         | (Xue & Huang, 1995)                                          |
| Kaolin                        | Mass of sorbent: varied from 5 g/L to 20 g/L, duration: 3 hours.    | (Mishra & Patel, 2009)                                       |

Table 1. Sorbents that can be used to remove Zn<sup>2+</sup>

# **ADVANTAGES OF USING SAWDUST AS A SORBENT**

- Wood shavings;
- Sawdust;
- Small pieces of wood.

Advantages of using sawdust as a sorbent:

- Eco-friendly (Support sustainability);
- High sorption capacity;
- Acceptable price compared to synthetic materials.

account for **up to 40%** of the mass of wood-based materials.

#### WOOD-BASED MATERIALS

Usable portion of the wood



The macromolecule of **cellulose** is composed of a large number of  $\beta$ -glucoses linked by 1,4- $\beta$ -glycosidic bonds.

Cellulose molecules contain at least 10,000 glucose residues and can reach lengths of 6-8  $\mu m.$ 



The mechanism of sorption involves the interaction of metal ions with hydroxyl groups, primarily through ion exchange, with additional complex formation between metal ions and sorbent functional groups.

# **EXPERIMENTAL PART OF THE PROJECT**



### DATA COLLECTION AND PREPARATION FOR ANALYSIS OF FIR SAWDUST

### Sampling location: Wood processing enterprise in Ust-Kamenogorsk (September 2023)

## **Stages of work:**

- Sample preparation;
- Grinding;
- Drying.



Figure 1. Samples of fir sawdust

#### **Relative humidity of wood**, %

 $W = \frac{m_1 - m_2}{m_1 - m} \times 100\%$ 

(1g wood sample in a crucible until constant mass at a temperature of 100-105°C)

| Fir sawdust samples | Humidity, % |
|---------------------|-------------|
| Sample 1            | 6.04        |
| Sample 2            | 6.26        |
| Sample 3            | 5.92        |
| Average value       | 6.07        |

#### Table 2. Humidity content in fir sawdust

# **DETERMINATION OF CELLULOSE CONTENT IN FIR SAWDUST**

Methods: the nitric acid-ethanol treatment by boiling, filtering, and drying the obtained cellulose on glass filters.

 $C = \frac{m_1 - m_2}{g} \times 100\%$ 

- m<sub>2</sub> mass of the empty filter, g;
- m<sub>1</sub> mass of the filter with cellulose after drying, g;
- g mass of absolutely dry wood sample, g;
- C mass fraction of "raw" cellulose, %

#### **Cellulose content in fir samples**

| Fir sawdust<br>sample | Cellulose<br>content, % |
|-----------------------|-------------------------|
| Sample 1              | 40.07                   |
| Sample 2              | 40.79                   |
| Sample 3              | 39.48                   |
| Average value         | 40.11                   |

 Table 3. Cellulose content in fir sawdust

# **ADSORBENTS BASED ON FIR SAWDUST**







**Figure 2.** Preparation of model solutions with a concentration of zinc (0.01-0.05 mol/L)



Figure 3-5. Determination of zinc ion concentration



Figure 6. Preparation of sorbents



Figure 7. Filtration of model solutions using each sorbent

# **CALCULATION OF EXTRACTION EFFICIENCY**

### The extraction efficiency $\alpha$ is calculated using the formula:

$$\alpha = \frac{(C_0 - C_s)}{C_0} \times 100\%$$

- $C_0$  initial concentration of the component in the solution, g/L;
- ▶ C<sub>s</sub> concentration of the component in the solution after sorption, g/L.

The adsorption capacity of zinc ions is calculated using the formula:

 $\Gamma = \frac{\Delta C \times V}{\mathbf{m(sorbent)}}$ 

- $\Delta C$  difference between the concentrations, mol/L;
- V volume of the zinc model solution, L;
- ▶ m mass of the sample (0.5 grams).

# **EXTRACTION EFFICIENCY IN DIFFERENT SORBENTS**

| Concentration<br>of solutions,<br>mol/L | Sorbent<br>1 | Sorbent<br>2 | Sorbent<br>3 | Sorbent<br>4 |
|-----------------------------------------|--------------|--------------|--------------|--------------|
| 0,01                                    | 15,8         | 21           | 16,6         | 55,6         |
| 0,02                                    | 14,6         | 17,1         | 17,5         | 40,0         |
| 0,03                                    | 5,0          | 10           | 10,3         | 27,6         |
| 0,04                                    | 3,9          | 5,2          | 8,9          | 23,7         |
| 0,05                                    | 5,9          | 5,9          | 9,2          | 16,3         |

 Table 4. Dependence of zinc ion extraction efficiency on solution concentration

The lowest extraction efficiency is observed with non-activated sawdust. The highest extraction efficiency occurs with sawdust activated by 1M NaOH solution. The maximum extraction efficiency, 55.6%, is observed at a zinc ion concentration of 0.01 mol/L.



Graph 1. Extraction efficiency and solution concentration

 $(1 - \text{sorbent without activation}, 2 - \text{thermal activation at } 300^{\circ}\text{C}, 3 - \text{chemical activation with } 1\text{M} \text{H}_2\text{SO}_4, 4 - \text{chemical activation with } 1\text{M} \text{NaOH})$ 

| C<br>theoretical,<br>mol/L | C experimental<br>before sorption<br>mol/L | C experimental<br>after sorption,<br>mol/L | ΔC,<br>mol/L | R,%  | Γ,<br>mol/g |
|----------------------------|--------------------------------------------|--------------------------------------------|--------------|------|-------------|
| 0.01                       | 0.0090                                     | 0.0040                                     | 0.0050       | 55.6 | 0.0010      |
| 0.02                       | 0.0200                                     | 0.0120                                     | 0.0080       | 40.0 | 0.0016      |
| 0.03                       | 0.0290                                     | 0.0210                                     | 0.0080       | 27.6 | 0.0016      |
| 0.04                       | 0.0380                                     | 0.0290                                     | 0.0090       | 23.7 | 0.0018      |
| 0.05                       | 0.0490                                     | 0.0410                                     | 0.0080       | 16.3 | 0.0016      |

 Table 5. Sorption data for activated fir sawdust with 1M NaOH

#### **Effect of NaOH concentration on extraction efficiency**



**Figure 8.** Sorbents activated by NaOH with concentrations from 0.01 to 1.5 mol/L

The highest extraction efficiency is observed with sawdust modified using a 1.5M NaOH solution, reaching 78.9%.

As the concentration of sodium hydroxide solution used for activation increases, the extraction efficiency of zinc ions from salt solutions also rises.

| Concentration of NaOH, mol/L                | 0.1  | 0.5  | 1.0  | 1.5  |
|---------------------------------------------|------|------|------|------|
| Extraction<br>efficiency of zinc<br>ions, % | 17.9 | 23.2 | 55.6 | 78.9 |
|                                             |      |      |      |      |

Table 6. Sorption data for activated fir sawdust with 1M NaOH



# Conclusion

Within the framework of this project, a literature review was conducted on the sorption process of heavy metals, including zinc ions. Various types of sorbents and the factors influencing the sorption process were examined.

The humidity content of the sawdust was determined to be 6.07%, with cellulose content at 40.11%.

The optimal sorption conditions involve using a sorbent activated with a 1.5M NaOH solution (activation time of 24 hours) and a zinc ion concentration of 0.01 mol/L. The maximum extraction degree for these sorbents, reached 78.9%.

As the concentration of NaOH increases, the extraction efficiency also rises.

### **References:**

- 1. Bogatyrev, Y. V., Dmitrieva, E. D., Leontyeva, M. M., & Syundykova, K. V. (2017). Sorption capacity of humic substances from peat in the Tula region towards zinc ions. *Izvestiya of Tula State University. Natural Sciences*, 49-57.
- 2. Cronje, K. J. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. *Desalination*, *275*(1-3), 276.
- 3. Mishra, P. C., & Patel, R. K. (2009). Removal of lead and zinc ions from water by low-cost adsorbents. *Journal of Hazardous Materials, 168*(1), 319–325.
- Prasad, A. S. (2008). Zinc in human health: Effect of zinc on immune cells. *Molecular Medicine (Cambridge, Mass.), 14*(5-6), 353–357. <u>https://doi.org/10.2119/2008-00033.Prasad</u>
- Prisevko, D. Y. (n.d.). The sorption process and its place in human activity Start in Science (scientific journal for schoolchildren). (Electronic resource). <u>https://science-start.ru/ru/article/view?id=2247</u>
- 6. Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., & Li, Z. (2021). Recent advances of photocatalytic application in water treatment: A review. *Nanomaterials (Basel, Switzerland), 11*(7), 1804. <u>https://doi.org/10.3390/nano11071804</u>
- 7. Xue, J., & Huang, P. M. (1995). Zinc adsorption-desorption on short-range ordered iron oxide as influenced by citric acid during its formation. *Geoderma, 64*(3), 343–356. https://doi.org/10.1016/0016-7061(94)00019-7

Let's work together to make the Earth a better place to live

# Thank you for your attention!